跳到主要內容

DeepRacer

Preliminary training:


deepracer-github-simapp.tar.gz

Reward function:
./opt/install/sagemaker_rl_agent/lib/python3.5/site-packages/markov/environments/deepracer_env.py



action = [steering_angle, throttle]
TRAINING_IMAGE_SIZE = (160, 120)






Plotted waypoints in vertices array of hard track


Parameters:
on_track,
x, y,
distance_from_center, car_orientation, progress, steps,                                                                         
throttle, steering,
track_width,
waypoints, closest_waypoints




Note: Above picture is from https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

留言

這個網誌中的熱門文章

增強式學習

   迴力球遊戲-ATARI     賽車遊戲DQN-ATARI 賽車遊戲-TORCS Ref:     李宏毅老師 YOUTUBE DRL 1-3 On-policy VS Off-policy On-policy     The agent learned and the agent interacting with the environment is the same     阿光自已下棋學習 Off-policy     The agent learned and the agent interacting with the environment is different     佐助下棋,阿光在旁邊看 Add a baseline:     It is possible that R is always positive     So R subtract a expectation value Policy in " Policy Gradient" means output action, like left/right/fire gamma-discounted rewards: 時間愈遠的貢獻,降低其權重 Reward Function & Action is defined in prior to training MC v.s. TD MC 蒙弟卡羅: critic after episode end : larger variance(cuz conditions differ a lot in every episode), unbiased (judge until episode end, more fair) TD: Temporal-difference approach: critic during episode :smaller variance, biased maybe atari : a3c  ...