跳到主要內容

DQN-Atari-Enduro porting


For
https://github.com/matrixBT/DQN-Atari-Enduro



Dockerfile:
FROM tensorflow/tensorflow:1.12.0-gpu-py3 

#https://github.com/yanpanlau/DDPG-Keras-Torcs
WORKDIR /home/frank/rl/DQN-Atari-Enduro
ADD . /home/DQN-Atari-Enduro

RUN apt-get update
RUN apt-get install -y vim xautomation torcs
RUN apt-get install -y libjpeg-dev cmake swig python-pyglet python3-opengl libboost-all-dev \
        libsdl2-2.0.0 libsdl2-dev libglu1-mesa libglu1-mesa-dev libgles2-mesa-dev \
        freeglut3 xvfb libav-tools

#optional gtags
RUN apt-get install -y exuberant-ctags libncurses-dev

RUN pip install jupyter scipy gym
RUN pip install "gym[atari]"
RUN pip install keras-rl
RUN pip install https://pypi.python.org/packages/68/c3/300c6f92b21886b0fe42c13f3a39a06c6cb90c9fbb1b71da85fe59091a7d/pyglet-1.2.4-py3-none-any.whl#md5=08e6404a678f91b4eee85eb33b028d88 
ENV PATH="/usr/games:${PATH}"

CMD ["/bin/bash"]

launch jupyter notebook within docker container:
1.
(~/rl/DQN-Atari-Enduro) viper1 $ docker run --runtime=nvidia -it -e DISPLAY=$DISPLAY -e XAUTHORITY=$XAUTHORITY -v /tmp/.X11-unix:/tmp/.X11-unix -v /home/frank/rl/DQN-Atari-Enduro:/home/DQN-Atari-Enduro -v /var/run/docker.sock:/var/run/docker.sock --workdir /home/DQN-Atari-Enduro -p 8888:8888 tensorflow/tensorflow:DQN-Atari-Enduro /bin/bash

2.
root@9da3183dad9e:/home/DQN-Atari-Enduro# jupyter notebook --ip 0.0.0.0 --no-browser --allow-root --port 8888

3.
open browser in host and paste
http://localhost:8888

4.
then input token from step2

留言

這個網誌中的熱門文章

OCR應用在電子元件上的辨識

 OCR Application Example1: for SMD idenfication : Text detect by CRAFT   OCR文字偵測 原始照片為網路上下載,再套上OCR文字偵測顯示結果,若有侵權請告知移除 彩色區域為偵測到文字的部份 Output 10 coordinates of corresponding text blocks 1.  144,196,286,194,287,259,145,261 2.  298,198,509,196,509,259,298,262 3.  148,262,286,262,286,321,148,321 4.  368,266,513,264,513,321,369,323 5.  145,331,472,333,471,395,145,393 6.  146,404,445,404,445,454,146,454 7.  146,453,512,453,512,502,146,502 8.  147,502,481,499,481,551,148,553 9.  148,550,614,550,614,600,148,600 10.513,600,714,600,714,648,513,648  After image pre-processing:    OCR result1:   After image pre-processing:  OCR result2:     Example2: for datasheet interpretation : Text detect of TI datasheet by CRAFT OCR results: ([[75, 11], [127, 11], [127, 31], [75, 31]], 'TEXAS', 0.999188403930061) ([[474, 4], [928, 4], [928, 32], [474, 32]], 'PACKAGE MATERIALS INFORMATION', 0.6743955072876302) ([[77, 29],...

Face recognition

. . . . . even with mask