跳到主要內容

使用RNN模型作語音訊號的除噪

使用RNN模型作語音訊號的除噪

 O​riginal Voice Clip:錄下的人聲語音訊號

 O​ffice Noise:錄下的辦公室背景噪音

 Mixing:前2項混合而成的訊號

 After RNN:透過RNN模型除噪後的語音訊號波形

 By Directional Mic in F15K:筆電上指向型麥克風的所錄下除噪後的波形

結論:透過RNN模型除噪的功能,具有近似指向型麥克風的除噪功能。也就是以軟體處理的技術來取代實體裝置。

 From lower right 2 pictures, voice clip mixed with background noise was restored well in comparison to audio waveform recording by directional mic and original voice clip waveform.


Ref:
https://people.xiph.org/~jm/demo/rnnoise/
https://hacks.mozilla.org/2017/09/rnnoise-deep-learning-noise-suppression/
https://github.com/xiph/rnnoise

mic denoise rnn
        audacity:
        import -> raw data -> Signed 16bit/Little endian/one channel, 48000
        rnn
        frank@frank-GL753VD:~/1T/back0529/mic
        import format: Signed 16 bit mono format
        frank@frank-GL753VD:~/1T/back0529/mic
        ~/1T/back0529/mic/RNNtest/F15K/tsai1.raw  ---->recorded by 2 mic (directional mic)
        ~/1T/back0529/mic/RNNtest/AS3EA/OUTtsai1.pcm  ---->after RNN
        ~/1T/back0529/mic/RNNtest/AS3EA/tsai1.pcm  ----> after Mixing





留言

這個網誌中的熱門文章

OCR應用在電子元件上的辨識

 OCR Application Example1: for SMD idenfication : Text detect by CRAFT   OCR文字偵測 原始照片為網路上下載,再套上OCR文字偵測顯示結果,若有侵權請告知移除 彩色區域為偵測到文字的部份 Output 10 coordinates of corresponding text blocks 1.  144,196,286,194,287,259,145,261 2.  298,198,509,196,509,259,298,262 3.  148,262,286,262,286,321,148,321 4.  368,266,513,264,513,321,369,323 5.  145,331,472,333,471,395,145,393 6.  146,404,445,404,445,454,146,454 7.  146,453,512,453,512,502,146,502 8.  147,502,481,499,481,551,148,553 9.  148,550,614,550,614,600,148,600 10.513,600,714,600,714,648,513,648  After image pre-processing:    OCR result1:   After image pre-processing:  OCR result2:     Example2: for datasheet interpretation : Text detect of TI datasheet by CRAFT OCR results: ([[75, 11], [127, 11], [127, 31], [75, 31]], 'TEXAS', 0.999188403930061) ([[474, 4], [928, 4], [928, 32], [474, 32]], 'PACKAGE MATERIALS INFORMATION', 0.6743955072876302) ([[77, 29],...

Face recognition

. . . . . even with mask