跳到主要內容

DDPG in Torcs within Docker Container











Dockerfile:
FROM tensorflow/tensorflow:0.10.0-gpu

WORKDIR /home/frank/old_gym_torcs
ADD . /home/old_gym_torcs 

RUN apt update
RUN apt install -y vim xautomation torcs
RUN apt-get install -y libjpeg-dev cmake swig python-pyglet python3-opengl libboost-all-dev \
        libsdl2-2.0.0 libsdl2-dev libglu1-mesa libglu1-mesa-dev libgles2-mesa-dev \
        freeglut3 xvfb libav-tools

RUN pip install gym
RUN pip install keras==1.1.0
ENV PATH="/usr/games:${PATH}"
CMD ["/bin/bash"]



viper1 $ docker run --runtime=nvidia -it -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v /home/frank/old_gym_torcs:/home/old_gym_torcs -v /var/run/docker.sock:/var/run/docker.sock -v /home/frank/gym_torcs:/home/gym_torcs -v /home/frank/gym:/home/gym -p 3101:3101 --workdir /home/old_gym_torcs -p 8888:8888 ddpgfrk:tf0.10 /bin/bash

(grey part is not necessary)

After 
$ docker commit id ddpg:tf0.10.0-gpu

viper1 $ docker run --runtime=nvidia -it -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v /home/frank/old_gym_torcs:/home/old_gym_torcs -v /var/run/docker.sock:/var/run/docker.sock -v /home/frank/gym_torcs:/home/gym_torcs -v /home/frank/gym:/home/gym -p 3101:3101 --workdir /home/old_gym_torcs -p 8888:8888 ddpg:tf0.10.0-gpu /bin/bash
..
Q:
autostart.sh: 12: autostart.sh: xte: not found
A:
sudo apt install xautomation

Q:
NameError: global name 'emsg' is not defined
A:
python2 and python 3 try except syntax conflict
snakeoil3_gym.py
-        except (socket.error, emsg):
+        except socket.error as emsg:


Reward Function:
Rt=Vxcos(θ)Vxsin(θ)VxtrackPos


Ref:
https://github.com/ugo-nama-kun/gym_torcs
https://github.com/yanpanlau/DDPG-Keras-Torcs
https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

留言

這個網誌中的熱門文章

OCR應用在電子元件上的辨識

 OCR Application Example1: for SMD idenfication : Text detect by CRAFT   OCR文字偵測 原始照片為網路上下載,再套上OCR文字偵測顯示結果,若有侵權請告知移除 彩色區域為偵測到文字的部份 Output 10 coordinates of corresponding text blocks 1.  144,196,286,194,287,259,145,261 2.  298,198,509,196,509,259,298,262 3.  148,262,286,262,286,321,148,321 4.  368,266,513,264,513,321,369,323 5.  145,331,472,333,471,395,145,393 6.  146,404,445,404,445,454,146,454 7.  146,453,512,453,512,502,146,502 8.  147,502,481,499,481,551,148,553 9.  148,550,614,550,614,600,148,600 10.513,600,714,600,714,648,513,648  After image pre-processing:    OCR result1:   After image pre-processing:  OCR result2:     Example2: for datasheet interpretation : Text detect of TI datasheet by CRAFT OCR results: ([[75, 11], [127, 11], [127, 31], [75, 31]], 'TEXAS', 0.999188403930061) ([[474, 4], [928, 4], [928, 32], [474, 32]], 'PACKAGE MATERIALS INFORMATION', 0.6743955072876302) ([[77, 29],...

Face recognition

. . . . . even with mask