跳到主要內容

nvidia-docker2


https://github.com/NVIDIA/nvidia-docker/wiki/Installation-(version-2.0)#prerequisites



https://www.nvidia.com.tw/object/docker-container-tw.html

Prerequisites

The list of prerequisites for running nvidia-docker 2.0 is described below.
For information on how to install Docker for your Linux distribution, please refer to the Docker documentation.
  1. GNU/Linux x86_64 with kernel version > 3.10
  2. Docker >= 1.12
  3. NVIDIA GPU with Architecture > Fermi (2.1)
  4. NVIDIA drivers ~= 361.93 (untested on older versions)
Your driver version might limit your CUDA capabilities (see CUDA requirements)

Removing nvidia-docker 1.0

Version 1.0 of the nvidia-docker package must be cleanly removed before continuing.
You must stop and remove all containers started with nvidia-docker 1.0.

Ubuntu distributions

docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -q -a -f volume={} | xargs -r docker rm -f
sudo apt-get purge nvidia-docker
 

Installing version 2.0

 

sudo apt-get install nvidia-docker2
sudo pkill -SIGHUP dockerd
 

Basic usage

nvidia-docker registers a new container runtime to the Docker daemon.
You must select the nvidia runtime when using docker run:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
 

 

留言

這個網誌中的熱門文章

增強式學習

   迴力球遊戲-ATARI     賽車遊戲DQN-ATARI 賽車遊戲-TORCS Ref:     李宏毅老師 YOUTUBE DRL 1-3 On-policy VS Off-policy On-policy     The agent learned and the agent interacting with the environment is the same     阿光自已下棋學習 Off-policy     The agent learned and the agent interacting with the environment is different     佐助下棋,阿光在旁邊看 Add a baseline:     It is possible that R is always positive     So R subtract a expectation value Policy in " Policy Gradient" means output action, like left/right/fire gamma-discounted rewards: 時間愈遠的貢獻,降低其權重 Reward Function & Action is defined in prior to training MC v.s. TD MC 蒙弟卡羅: critic after episode end : larger variance(cuz conditions differ a lot in every episode), unbiased (judge until episode end, more fair) TD: Temporal-difference approach: critic during episode :smaller variance, biased maybe atari : a3c  ...

DeepRacer

Preliminary training: deepracer-github-simapp.tar.gz Reward function: ./opt/install/sagemaker_rl_agent/lib/python3.5/site-packages/markov/environments/deepracer_env.py action = [steering_angle, throttle] TRAINING_IMAGE_SIZE = (160, 120) Plotted waypoints in vertices array of hard track Parameters: on_track, x, y, distance_from_center, car_orientation, progress, steps,                                                                          throttle, steering, track_width, waypoints, closest_waypoints Note: Above picture is from https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

Frameworks overview

Picture courtesy from Paul Huang