跳到主要內容

StarGAN

Ref:
https://github.com/yunjey/stargan
https://arxiv.org/pdf/1711.09020.pdf

StarGAN如圖(b)與其他GAN模型相較受到關注的特色在於其不同Domain間的轉換可以使用同一個模不需要一對一Domain的產生很多組模型如圖(a).


Picture originated from: https://arxiv.org/pdf/1711.09020.pdf








下圖是使用StarGAN生成的圖片一組有六張分別是
Input + Black_Hair +Golden_Hair +Brown_Hair +Gender_Change +Aged 5Domain

Train這個模型在FX705GE(CPU:INTEL i7-8750H, 32G RAM)上花了約39小時作Training, 總共200,000 steps, 執行速度7 sec/ 10steps ,
相對GL753VE(CPU:INTEL i7-7700HQ, 24G RAM) 90 sec/ 10steps <== 只是worker node, 未開啟NVIDIA CUDA

從下列image看來效果有好有壞視人頭比例, training dataset, 相片品質及背景等條件而異.
感謝同仁們(EX-)及致中提供玉照協助!! 使用celebrity datasettraining 及部份testing



        Input               + Black_Hair       + Golden_Hair    + Brown_Hair       + Gender_Change + Aged






               Input            + Black_Hair       + Golden_Hair     + Brown_Hair     + Gender_Change + Aged





留言

這個網誌中的熱門文章

OCR應用在電子元件上的辨識

 OCR Application Example1: for SMD idenfication : Text detect by CRAFT   OCR文字偵測 原始照片為網路上下載,再套上OCR文字偵測顯示結果,若有侵權請告知移除 彩色區域為偵測到文字的部份 Output 10 coordinates of corresponding text blocks 1.  144,196,286,194,287,259,145,261 2.  298,198,509,196,509,259,298,262 3.  148,262,286,262,286,321,148,321 4.  368,266,513,264,513,321,369,323 5.  145,331,472,333,471,395,145,393 6.  146,404,445,404,445,454,146,454 7.  146,453,512,453,512,502,146,502 8.  147,502,481,499,481,551,148,553 9.  148,550,614,550,614,600,148,600 10.513,600,714,600,714,648,513,648  After image pre-processing:    OCR result1:   After image pre-processing:  OCR result2:     Example2: for datasheet interpretation : Text detect of TI datasheet by CRAFT OCR results: ([[75, 11], [127, 11], [127, 31], [75, 31]], 'TEXAS', 0.999188403930061) ([[474, 4], [928, 4], [928, 32], [474, 32]], 'PACKAGE MATERIALS INFORMATION', 0.6743955072876302) ([[77, 29],...

Face recognition

. . . . . even with mask